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Abstract
Yet often neglected, dynamical interdependencies between concomitant contagion processes can
alter their intrinsic equilibria and bifurcations. A particular case of interest for disease control is the
emergence of discontinuous transitions in epidemic dynamics coming from their interactions with
other simultaneous processes. To address this problem, here we propose a framework coupling a
standard epidemic dynamics with another contagion process, presenting a tunable parameter
shaping the nature of its transitions. Our model retrieves well-known results in the literature, such
as the existence of first-order transitions arising from the mutual cooperation of epidemics or the
onset of abrupt transitions when social contagions unidirectionally drive epidemics. We also reveal
that negative feedback loops between simultaneous dynamical processes might suppress abrupt
phenomena, thus increasing systems robustness against external perturbations. Our results render
a general perspective toward finding different pathways to abrupt phenomena from the interaction
of contagion processes.

1. Introduction

Understanding complex systems requires shifting from reductionist theories, devoted to the study of their
components in isolation, toward formalisms addressing the crucial role of interactions in the emergence of
collective behaviors [1, 2]. The study of the flocking behavior observed in groups of birds [3, 4] or the
synchronous firing of a collection of interacting neurons [5, 6] are some examples illustrating the successful
application of complex systems science to characterize a myriad of collective phenomena occurring across
different scales in nature. Nonetheless, analogously to the failure of reductionist theories in understanding
complex systems, focusing on single isolated dynamics might fail in capturing the phenomenology resulting
from their interactions with other concomitant dynamical processes. The latter issue calls for the
development of new integrating frameworks, modeling the possible interdependencies [7, 8] connecting
dynamical processes unfolding across similar time scales and their outcome in the observed collective states.

Undoubtedly, one of the most paradigmatic illustrations of the impact of such interdependencies is the
comorbidity of infectious diseases. Some examples are the increased vulnerability to several diseases
following HIV infection [9, 10] or the surge in fatalities in patients with pneumonia during the Spanish flu
outbreak [11]. Alternatively, the presence of one pathogen in the population might hamper the propagation
of another one. Such competition is usually observed in the epidemic trajectories of viruses with multiple
strains circulating simultaneously, such as influenza [12] and DENV [13] or more recently in the complex
landscape depicted by the different SARS-CoV-2 variants [14, 15]. Outside the domain of interacting
epidemics, another clear example of the relevance of interdependencies among simultaneous dynamics is the
influence of social behavior on epidemic spreading [16, 17]. For instance, the existence of mutual feedback
between the individual adoption of preventive measures and the spread of a pathogen [18, 19] provides a
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natural mechanism for the emergence of oscillations in the epidemic curves [20, 21], even in the absence of
seasonal effects shaping the intrinsic transmissibility of the virus.

The most conventional approach to model interacting epidemics relies on integrating multiple dynamical
processes within a single compartmental model [22, 23]. Following this approach, numerous studies have
explored the effects of competition [24, 25] and cooperation [26, 27] in the intertwined dynamics, modeled
respectively as a reduction or an increase of the vulnerability of infected population to the other circulating
pathogen. One of the most significant findings when addressing the mutual cooperation between epidemic
spreading processes is that the second-order transitions characterizing epidemic dynamics in isolation turn
into first-order ones [28, 29]. Therefore, the bi-directional enhancement of epidemic processes changes the
nature of the transitions between the spreaders-free and the epidemic states. While second-order
(continuous) transitions correspond to a smooth change in the order parameter and a discontinuity of its
derivative, first-order (discontinuous) ones are characterized by an abrupt change in the order parameter at
the transition point.

Unlike epidemic processes, social dynamics display first-order transitions in isolation as a result of the
complex contagion mechanisms responsible for their diffusion [30, 31]. This complex contagion reflects that
transmission in social dynamics not only depends on the pairwise interaction between the transmitter and
the receptor of the information but also on the context of the latter [32, 33]. Mathematically, complex
contagions are modeled through synergistic transmission rates [34], or following higher-order approaches
that explicitly incorporate the influence of group structures in the transmission process [35–37]. These
features prompt the emergence of discontinuous transitions in epidemic dynamics when being coupled with
social dynamics, even in the absence of the aforementioned bi-directional enhancement. Indeed, a recent
study by Lucas et al [38] shows that higher-order social dynamics, driving but not receiving any feedback
from epidemics, induce an abrupt transition between the disease-free and the epidemic states.

Regardless of their microscopic origin, the presence of discontinuous transitions compromises systems’
stability, as small perturbations in the system features or negligible stochastic fluctuations can lead to vastly
different dynamical outcomes. Hence, their characterization has been an important area of research within
complex systems over the past few decades [29]. Following this line, in this work we are interested in
unveiling the possible pathways for the emergence of discontinuous transitions resulting from coupling two
simultaneous spreading processes. For this purpose, we propose a general framework coupling a standard
epidemic dynamics with another spreading process whose nature depends on a tunable parameter. Such
parameter allows us to explore different contagion processes, ranging from epidemics to social dynamics
with strong group effects. Our model aims at addressing (i) how abruptness naturally arises from the
interaction between dynamics and (ii) what kind of interactions are driving such emergence as a function of
the nature of the processes involved.

Our paper is organized as follows: in section 2, we present our general framework to explore pathways to
discontinuous transitions in intertwined spreading processes. In section 3, we delve into the classical
interaction between two epidemic dynamics. We confirm the emergence of discontinuous transitions arising
from their mutual cooperation and the second-order extinction of weakest variants induced by their
competition with strongest ones. In section 4, we study the coupling of social dynamics with epidemic
processes. First, we consider the unidirectional influence of social dynamics on epidemics, a situation
resembling how free-riding behavior is detrimental to epidemic control and thus facilitates the epidemic
spreading [39, 40], or how the population experiences fatigue in adopting preventive measures [41]. There,
we recover the induced discontinuous transitions in the epidemic dynamics and characterize analytically the
bifurcation points. Secondly, we explore more complex scenarios involving the interactions between abrupt
and non-abrupt processes. We show that discontinuous transitions are suppressed when coupling both
dynamics through a negative feedback loop, highlighting the relevance of these structures for systems’
stability. This scenario could reflect how, in the interplay between loss of risk perception and contagion
dynamics, the former process leads to stop adopting prevention measures, thus fostering contagions, which
eventually raise awareness in the population [42, 43]. Finally, we report that a mutually competitive scenario
involving complex contagions also exhibits discontinuous transitions, unlike the case of competing
epidemics.

2. Interacting contagion processes

In this section, we introduce our framework to capture the spread of interacting contagion processes. We
assume that there exist two spreading dynamics, denoted by dynamics A and B respectively, which can be
modeled as standard susceptible–infected–susceptible (SIS) dynamics in isolation. The SIS model divides the
population into two distinct categories: susceptible (S), i.e. those vulnerable to the pathogen (spreading
unit), and infected (I), i.e. those who were infected and can transmit the pathogen to other susceptible
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Figure 1. Compartmental model and interplay between interacting spreading dynamics. (a) The compartmental model for
interacting contagion processes is described. The model has four compartments: susceptible (S), infected by pathogen A (A),
infected by pathogen B (B) and infected by both pathogens (AB). Arrows indicate the possible transitions between different states.
(b) Scenarios explored when coupling two epidemic processes (γ= 0). Top row represent mutually cooperating diseases, i.e.
ϵAB = ϵBA > 1, whereas bottom row sketches a competitive interaction, i.e. ϵAB = ϵBA < 1. (c) Three interactions schemes for a
social dynamics A (γ ̸= 0) interacting with another epidemic dynamics B: unidirectional enhancement with no feedback, i.e.
ϵAB > 1 and ϵBA = 1, negative feedback loops, i.e. ϵAB > 1 and ϵBA < 1, and mutual competition, i.e. ϵAB < 1 and ϵBA < 1.

counterparts. To couple the two simultaneous contagion processes A and B, we extend the usual SIS model to
accommodate four possible states: susceptible S, infected by just the first pathogen A or the second one B and
finally those who are infected by both, denoted by AB [23, 38]. The flow diagram of the compartmental
model is depicted in figure 1(a). First, we assume that susceptible individuals S get infected with disease A or
B at a rate λ̃A or λ̃B respectively. For the sake of simplicity, we assume the same recovery rate for both
diseases, denoted by µ. To account for the interaction between spreading processes, we assume that one
individual infected with A (B) contracts the pathogen B (A) at a rate λ̃BϵAB (λ̃AϵBA). Therefore, ϵij = 1
encodes the spread of non-interacting processes, as the infection rates become independent on the dynamical
states. Conversely, if ϵij > 1, the presence of i it enhances j infection rate (cooperation or excitation), and in
case ϵij < 1, i suppresses j infection rate (competition or inhibition).

We consider a mean-field scenario and assume a closed population of N individuals, which allows us to
describe the proposed dynamics with a set of three equations. These equations consider the fraction of the
population in each infectious compartment, denoted by ρA = A/N, ρB = B/N and ρAB = AB/N respectively.
Without loss of generality, we assume µ= 1, obtaining the following set of equations describing the
evolution of the system:

ρ̇A =−ρA + λ̃AρS (ρA + ρAB)+ ρAB − ϵABλ̃BρA (ρB + ρAB) , (1)

ρ̇B =−ρB + λ̃BρS (ρB + ρAB)+ ρAB − ϵBAλ̃AρB (ρA + ρAB) , (2)

ρ̇AB =−2ρAB + ϵABλ̃BρA (ρB + ρAB)+ ϵBAλ̃AρB (ρA + ρAB) , (3)

where ρS = 1− ρA − ρB − ρAB represents the fraction of population in the susceptible state.
The individual contagion rates, λ̃A and λ̃B respectively, are set according to the nature of each contagion

process. For dynamics B, we assume an epidemic process with a constant contagion rate per contact,
implying λ̃B = λB. In isolation, dynamics B undergoes a second-order transition at λB = 1 from the
spreaders-free state to an endemic equilibrium. Conversely, we introduce a synergistic contagion rate for the
spreading process A, which reads [34]:

λ̃A = λAe
γ(1−ρAT) , (4)

with γ ⩽ 0. The former expression captures the impact of group pressure on social contagions, as the
probability that a susceptible individual starts spreading the idea increases with the fraction of spreaders in
the population ρAT . The parameter γ allows tuning the nature of the spreading process, ranging from
epidemic dynamics (γ= 0) to social contagions with strong group effects as γ is decreased. This synergistic
contagion rate changes the nature of the dynamics, as there exists a critical value γc [34] below which there is
an abrupt onset of spreaders in the population.

Introducing the expression for both contagion rates, λ̃A and λ̃B, and the total number of individuals
infected with each spreading unit, i.e. ρAT = ρA + ρAB and ρBT = ρB + ρAB, equations (1)–(3) turn into [38]:

ρ̇AT = ρAT

[
−1+λAe

γ(1−ρAT) (1− ρAT) +λAe
γ(1−ρAT) (ϵBA − 1)(ρBT − ρAB)

]
, (5)
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ρ̇BT = ρBT [−1+λB (1− ρBT) +λB (ϵAB − 1)(ρBT − ρAB)] , (6)

ρ̇AB =−2ρAB + ϵABλB (ρAT − ρAB)ρBT + ϵBAλAe
γ(1−ρAT) (ρBT − ρAB)ρAT . (7)

With this general framework, we can study the effects of interplay between dynamics A and B, depending
on the coupling interaction rates ϵAB, ϵBA, and the abrupt nature of dynamics A, controlled by the parameter
γ. We start by studying the propagation of two simultaneous infection processes by fixing γ= 0 and setting
symmetric interactions, i.e. ϵAB = ϵBA = ϵ, as sketched in figure 1(b). Moreover, we turn the epidemic process
A into a social contagion by setting γ ̸= 0 and explore three different couplings summarized in figure 1(c): an
unidirectional influence of dynamics A into dynamics B, a negative feedback between dynamics A and B
where dynamics A excites its inhibitor B and a mutual inhibition between both of them.

The exploration of these cases allows us to provide general information on the mechanisms responsible
for the emergence of discontinuous transitions from the interactions between different spreading process.
Throughout the manuscript, we characterize such transitions both analytically and with numerical results
obtained by integrating the set of equations (5)–(7) until their stationary state is reached. In the numerical
simulations, we capture how bistability emerges by performing forward and backward continuations, i.e. by
increasing or reducing smoothly the control parameter once stable states are reached and considering such
states as the initial condition for the dynamics corresponding to the new value of the control parameter. To
avoid getting trapped in undesired absorbing states, we add a negligible fraction of infected individuals
δm = 0.01 from the pool of susceptible agents if such stable configurations lack infected individuals of
dynamicsm, withm ∈ {A,B}.

3. Symmetric coupling between two epidemics

We first focus on two standard SIS dynamics by fixing γ= 0. Note that the latter choice implies that λ̃A = λA.
As stated above, we consider symmetric interactions ϵAB = ϵBA = ϵ and explore cooperative (ϵ> 1) or
mutually exclusive contagion processes (ϵ= 0). In figure 2(a), we set dynamics B in the absorbing phase by
fixing λB = 0.8 and explore the effects of increasing λA in a cooperative regime encoded by ϵ= 8. There, we
show that mutual cooperation between contagion processes gives rise to the onset of first-order transitions in
both epidemic curves. For the sake of comparison, we also represent the curves corresponding to two
independent epidemic processes (ϵAB = 1), displaying the typical smooth behavior observed for isolated
epidemic dynamics. Moving toward competing dynamics, figure 2(b) shows that, for ϵ= 0, the mutual
competition between both spreading processes always leads to the extinction of the least transmissible one.
Fixing λB = 1.5, we observe that B prevails over A until the latter becomes transmissible enough, i.e.
λA > 1.5, when B becomes extinct. Nonetheless, unlike cooperation, competition does not change the nature
of the transitions observed in the dynamics, as pinpointed by the lack of bistability in the epidemic curves.

4. Coupling social contagion with epidemic processes

Our previous results retrieve a well-known pathway for discontinuous transitions: the mutual enhancement
of two dynamics presenting second-order transitions in isolation. In this section, we extend our analysis to
consider a social dynamics A, natively displaying first-order transitions, and an epidemic dynamics B
characterized by second-order transitions. For this purpose, we explore the interplay between the parameter
γ, controlling the nature of the transition observed for dynamics A in isolation, and the interdependencies
existing both processes, considering two different scenarios: (i) dynamics A affects but does not depend on
dynamics B, referred to as unidirectional coupling, and (ii) dynamics B inhibits the transmission of dynamics
A, denoted by inhibitory coupling. Note that, given a social dynamics A and an epidemic dynamics B, the state
AB represents the fraction of the population spreading the idea A and infected by B. The social interpretation
of dynamics A depends on the interaction scheme assumed in the model, as further motivated in the
introduction.

4.1. Unidirectional coupling
Let us first explore the case in which dynamics A enhances transmissibility of B but remains independent of
this dynamical process. Therefore, we now explore the region of the parameters’ space delimited by ϵAB > 1
and ϵBA = 1. In figure 3(a) we show the evolution of the epidemic curves as we vary the parameters tuning
the social pressure effect γ, fixing ϵAB = 8. For γ= 0, we observe how the discontinuous transition found for
mutually cooperative epidemics vanishes when considering unidirectional feedback among them. The effect
of the group pressure mechanism, activated by reducing γ, is two-fold. First, lower γ values gives rise to
larger epidemic thresholds for the epidemic dynamics B, reflecting the later activation of dynamics A as a
result of its hindered transmission by the group pressure effects. More strikingly, when γ is small enough,
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Figure 2. Epidemic curves for two interacting diseases. Fraction of population at equilibrium infected by the spreading process A,
ρ∗AT

(top row, blue curve), or by the process B, ρ∗BT
(bottom row, orange curve) as a function of the contagion rate λA. The

parameters used to simulate the dynamics are (λB, ϵ) = (0.8,8) (panel (a)) and (λB, ϵ) = (1.5,0) (panel (b)). In both panels, the
gray curves illustrate the expected behavior for two non-interacting spreading processes, i.e. ϵ= 1. The procedure for performing
the numerical simulations is described at the end of section 2 of the manuscript.

Figure 3. Pathways to discontinuous transitions when social dynamics unidirectionally drives epidemic dynamics. (a) Epidemic
diagrams ρ∗AT

(λA) and ρ∗BT
(λA) for different values of the social pressure γ (color code), fixing the coupling strength ϵAB = 8. (b)

Epidemic diagrams for different coupling strength ϵAB values (color code), fixing γ =−1.5. In both panels, the instrinsic
contagion rate of process B is set to λB = 0.8 and we consider dynamics A to be independent from dynamics B, i.e. ϵBA = 1. (c)
Phase diagram when coupling unidirectionally social and epidemic dynamics (ϵBA = 1) as a function of the social pressure
affecting A, γ, and the contagion rate of dynamics B, λB. In region I dynamics A is natively abrupt and the activation of B also
becomes discontinuous for coupling rates above a given threshold ϵc,uAB (color code) given by equation (14). In region II dynamics
A is natively abrupt and B is in active phase. Thus, for all coupling rates ϵAB, B undergoes a discontinuous change within its active
phase. In regions III and IV, A is no longer abrupt and thus the transmitted phenomenology is continuous. The procedure for
performing the numerical simulations in panels (a) and (b) is described at the end of section 2 of the manuscript.

namely γ =−1.5, such activation takes place abruptly through a first-order transition which is transmitted
to dynamics B. Nevertheless, the transmission of the transition nature hinges on the coupling strength [38].
To illustrate this phenomenon, we fix γ =−1.5 and tune ϵAB, determining how dynamics A enhances
dynamics B. In figure 3(b) we show that lower values of the coupling strength (ϵAB = 1.4) give rise to the
smooth activation of dynamics B whereas first-order transitions are retrieved when the unidirectional
coupling is strong enough.

Figure 3(c) summarizes all possible scenarios found in the parameters space for the outcome of the
unidirectional coupling between both dynamical processes. In case dynamics A is not inherently abrupt, the
transition of dynamics B is continuous, regardless of whether it is inactive (region III) or active (region IV)
in isolation. Likewise, in region II, where dynamics A is abrupt (γ <−1) and dynamics B is in the active state
(λB > 1), there is always a discontinuous transition in ρ∗BT

. In what follows, we focus on region I, where the
emergence of first-order transitions in B depends on the interplay between the social pressure and the
coupling strength as stated above.

The lack of feedback from dynamics B to dynamics A (ϵBA = 1) enables us to obtain analytical insights
into how the transition in the epidemic curves observed at the epidemic threshold depends on both ϵAB and
γ. By imposing ϵBA = 1, equation (5) becomes

ρ̇AT = ρAT

[
−1+λAe

γ(1−ρAT) (1− ρAT)
]
, (8)
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Figure 4. Onset of epidemics under unidirectional coupling with social dynamics. (a) Critical values of A infectivity λc
A to activate

dynamic B (color code) as a function of the social pressure γ and the coupling strength ϵAB for λB = 0.8. This phase diagram
presents three different regions corresponding to λc

A > λ+
A (region 1, continuous transition in B), λ−

A < λc
A < λ+

A (region 2,

bistability for B but continuous behavior of the backward branch), and λc
A = λ−

A (region 3, bistability and discontinuous jump
for dynamics B). (b)–(d) Epidemic curves ρ∗AT

(λA), ρ∗BT
(λA) for three different points of the parameters space, fixing

(λB,γ) = (0.8,−1.5) and considering three different values of the coupling strength to explore the three different regions
explained above: ϵAB = 1.42 (panel (b), region 1), ϵAB = 1.5 (panel (c), region 2) and ϵAB = 2.5 (panel (d), region 3). In these
panels, the star symbols pinpoints the λc

A value. The procedure for performing the numerical simulations in panels (b)–(d) is
described at the end of section 2 of the manuscript.

which has three fixed points ρ⋆AT
[34] fulfilling ρ̇AT(ρ

⋆
AT
) = 0. The trivial one ρ⋆,1AT

= 0 corresponds to the
spreaders-free state while the other fixed points are characterized through the use of the Lambert functionW
as they satisfy:

ρ⋆AT
= 1− 1

γ
W

(
γ

λA

)
. (9)

The Lambert functionW(x) is a double-valued function in the interval x ∈ (−1/e,0), being these values
henceforth denoted byW0(x) andW−1(x) respectively. The range of definition of the Lambert function
delimits the lower bound λ−

A =−γe for the emergence of epidemic solutions. Therefore, when λA < λ−
A , the

only stable fixed point is the absorbing state ρ∗,1AT
. Above this threshold, there is a stable solution ρ⋆,0AT

, and

another unstable solution ρ⋆,−1
AT

separating the basins of attraction of ρ⋆,1AT
= 0 and ρ⋆,0AT

. The first-order
transition in dynamics A appears when the former stable state gets positive values at the transition point λ−

A .
The latter occurs for γ <−1, as the stable solution at this point reads ρ⋆,0AT

(λ−
A ) = 1+ 1/γ. Namely, when the

social pressure is large enough, a hysteresis cycle spanning the range (λ−
A ,λ

+
A ) appears, where λ

+
A = e−γ

corresponds to the λA value at which the unstable fixed point ρ⋆,−1
AT

collides with the trivial solution ρ⋆,1AT

through a saddle node bifurcation, i.e. ρ⋆,−1
AT

(λ+
A ) = 0.

The study of the fixed points of dynamics A allows us to analytically characterize how the social pressure
γ and the coupling strength ϵAB determine the nature of the transition of dynamics B. For this purpose, we
impose ρ̇BT = 0 in equation (6), obtaining the spreaders-free state ρ⋆,1BT = 0 and the implicit relation

ρ⋆BT = 1− 1

λB
+
(
ρ⋆AT

− ρ⋆AB
)
(ϵAB − 1) . (10)

To study the transition toward an active state for dynamics B, let us assume ρ⋆BT = ρ⋆AB = 0 and consider

the solution ρ⋆,0AT
(λA) = ρ⋆,0A (λA) for the dynamics A. Plugging the latter conditions into equation (10), we

obtain:

ρ∗,0AT
= ρ⋆,0A =

1/λB − 1

ϵAB − 1
, (11)

which can be introduced in equation (8) to find the value of λc
A above which B enters in the active phase.

The latter reads:

λc
A = e

−γ

[
1−

1
λB

−1

ϵAB−1

][
1−

1
λB

− 1

ϵAB − 1

]−1

. (12)

We represent the former expression in regions 1 and 2 of figure 4(a). Each region distinguishes a qualitatively
different transition for the dynamics B. The nature of the transition depends on the relationship between the

6
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Figure 5. Discontinuous transitions coupling dynamics A with an inhibitor B. (a) Epidemic curves ρ∗AT
(λA), ρ∗BT

(λA) as a
function of the coupling strength ϵAB when dynamics B inhibits dynamics A, i.e. ϵBA = 0, for λB = 1.5 and γ =−2. (b) Phase
diagram in presence of inhibitory feedback (ϵBA = 0) in terms of the social pressure for dynamics A, γ, and the infectiousness of
dynamics B, λB. Regions I and III report a phenomenology alike the unidirectional case: in region I dynamics A is natively abrupt
and the activation of B becomes abrupt above a critical coupling rate, and in region III both A and B dynamics undergo
continuous transitions. In regions II, further exemplified in panel (a), and IV, B is in active phase and suppresses the abrupt

behavior of A when ϵAB > ϵc,iAB (color code). Besides, the activation of dynamics A decreases ρ∗BT
for ϵAB < 1 whereas increases the

prevalence of both dynamics when ϵAB > 1. ϵc,iAB = 1 is highlighted with a white dotted line. The procedure for performing the
numerical simulations is described at the end of section 2 of the manuscript.

λc
A value and the limits of the hysteresis cycles (λ−

A ,λ
+
A ). If λ

c
A > λ+

A (region 1), dynamics B presents a
second-order transition driven by the smooth growth of ρ⋆,0AT

(λA) in the supercritical regime, as shown in
figure 4(b). For λ−

A < λc
A < λ+

A (region 2), we show in figure 4(c) that dynamics B exhibits two stable
solutions corresponding to the absorbing state ρ⋆,1BT and another solution starting from ρ⋆,0BT = 0 at λc

A and
continuously increasing with λA. The limiting case for such behavior, i.e. λc

A = λ+
A , implies that:

1−
1
λB

− 1

ϵAB − 1
= eγ

1
λB

−1

ϵAB−1 . (13)

Finally, when λc
A = λ−

A (region 3), the epidemic curve associated to dynamics B displays a discontinuous
transition once dynamics A is activated, as illustrated in figure 4(d). Plugging the latter condition into
equation (12), after some algebra we obtain the critical value of the coupling strength ϵc,uAB for such
discontinous behavior, which reads:

ϵc,uAB =
λB + γ

λB (γ+ 1)
. (14)

A similar expression for ϵc,uAB was obtained in [38] when modeling the social pressure mechanism as a
three-body simplicial contagion. Denoting the scaled three-body infectivity by λ∆, the map between both

expressions reads |γ| → λ
1/2
∆ .

4.2. Discontinuous transitions in inhibitory couplings
So far, we have studied how the social pressure γ and the coupling strength ϵAB shape the onset of epidemic
outbreaks when social contagions unidirectionally drive epidemic dynamics. In this section, we are interested
in extending our analysis to more complex interaction schemes between both dynamical processes. Given
their ubiquity in biological and socioeconomic systems, let us consider that both interact through a negative
feedback loop. In particular, we assume that dynamics A enhances its inhibitor B by setting ϵAB > 1 and
ϵBA = 0, as schematized in figure 1(c). In the context of social and epidemic processes, such choice could
reflect the interplay between loss of risk perception and contagion dynamics, as the former process leads to
stop adopting preventive measures, fostering contagions, which eventually raise awareness in the
population [42, 43].

We represent in figure 5(a) the epidemic curves for different coupling strength ϵAB, fixing λB = 1.5 and
γ =−2, thus considering that B is in the active state and A presents a first-order transition in isolation. In the
case of B being independent of A, i.e. ϵAB = 1, the prevalence of B remains constant while A preserves the
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Figure 6. Discontinuous transitions arising from the mutual inhibition of spreading processes. (a) Epidemic curves ρ∗AT
(λA),

ρ∗BT
(λA) as a function of the coupling strength ϵAB fixing γ =−0.5. (b) Epidemic curves ρ∗AT

(λA), ρ∗BT
(λA) as a function of the

social pressure γ fixing ϵAB = 0. In both cases, we set (ϵBA,λB) = (0,1.5). The procedure for performing the numerical
simulations is described at the end of section 2 of the manuscript.

first-order transition between the active and inactive states. Remarkably, the presence of the inhibitor B
hampers the onset of such transition by reducing the pool of susceptible individuals prone to contract A. In
particular, the threshold destabilizing the absorbing state of dynamics A reads λc,i

A = e−γ/(1− ρ∗B). As the
coupling is activated by increasing ϵAB, we observe a discontinuous transition for dynamics B with the
presence of hysteresis cycles and bistable solutions. Nevertheless, such cycles start shrinking as the negative
feedback loop structure gains relevance through the increase of the coupling strength ϵAB. Eventually, large
values of ϵAB prompt second-order transitions in both A and B, thus removing the inherent abrupt nature of
the transitions observed for dynamics A in isolation. This result highlights the relevance of negative feedback
loops to ensure systems robustness against external perturbations.

Analogously to the unidirectional case, we now provide a general description of the transitions observed
in both dynamics in the space (λB,γ) in figure 5(b). We observe four different regions: First, in regions I and
III, dynamics B is not able to reach the endemic state by itself, as λB < 1. Thus, when B is activated by A, the
qualitative behavior of the driver dynamic A is not affected, i.e. in region I (III) A undergoes a discontinuous
(continuous) transition. Region II captures the phenomenology described for figure 5(a) where the existence
of negative feedback loops between both dynamics might change the nature of their transitions. To further
characterize such phenomenon, we numerically obtain the value of the critical coupling strength ϵc,iAB above
which smooth transitions appear in the epidemic curves. Such value increases with the infectivity λB,
enhancing the presence of the inhibitor B in isolation, and the social pressure |γ|, increasing the abruptness
of the intrinsic transitions for dynamics A. Conversely, decreasing |γ| reduces the latter abruptness, thus
diminishing the role of negative feedbacks in ensuring the smooth behavior of the epidemic curves. In
particular, in region IV, characterized by an active B dynamics (λB > 1) and a non-abrupt dynamics A
(γ >−1), such smooth transitions are also observed in mutually competitive scenarios, as ϵc,iAB < 1.

To further characterize the region IV, we represent in figure 6(a), the evolution of the epidemic curves for
different values of the coupling strength ϵAB when fixing γ =−0.5. There we observe that in presence of
weak competition, 0< ϵAB < 1, dynamics A smoothly activates at λc,i

A = e−γ/(1− ρ∗B) giving rise to a
smooth decrease of the prevalence of dynamics B. As competition is strengthened, such behavior becomes
more abrupt until giving rise to a first-order transition between the existence and extinction of dynamics B in
the case of mutually exclusive processes (ϵAB = 0). Note that hysteresis cycles are driven by the social pressure
effect γ, as this behavior is not present when considering competing epidemics as proven in figure 2(b). The
relevance of the synergistic contagion rate is further illustrated in figure 6(b), where we show that decreasing
the social pressure for exclusive competing processes (ϵAB = ϵBA = 0) shrinks the bistability area, which
eventually vanishes in absence of this mechanism, i.e. γ= 0.

5. Conclusions

Understanding the emergence of abrupt phenomena is of paramount importance, since the abrupt nature of
those processes amplifies the impact of perturbations on their equilibria [44]. In this study, we have used a
minimal compartmental model to explore different pathways for the emergence of discontinuous transitions
in the context of two interacting spreading dynamics. Our model couples an epidemic dynamics with a
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socially-inspired spreading process with a synergistic contagion rate modeling the impact of social pressure
on transmission. Our framework allows exploring a myriad of scenarios for intertwined dynamics by tuning
both their individual properties, i.e. their dynamical states and transitions in isolation, and their
interdependencies.

In absence of any social pressure, our model retrieves well-known results studied in the context of
interacting epidemics. Namely, discontinuous transitions might arise from the mutual excitation of the
dynamics whereas the mutual exclusion of competing pathogens leads to a single equilibria characterized by
the extinction of the least transmissible process. Introducing the social pressure mechanism through the
synergistic contagion rate gives rise to a much richer phenomenology. First, we explore under which
conditions first-order transitions can be observed for epidemic dynamics unidirectionally driven by an
underlying social process. We reveal that the social dynamics must present a discontinuous transition in
isolation to observe abrupt ones in the coupled system. In these conditions, such discontinuous transitions
always emerge for active epidemics whereas an interplay between the social pressure and the coupling
strength determines the presence of abrupt transitions for inactive outbreaks in isolation.

As discussed above, first-order transitions represent a hazard for systems’ stability under external
perturbations. For this reason, we have also explored alternative interaction schemes to turn first-order
transitions observed for the isolated dynamics into smooth ones in the coupled system. Our numerical
results reveal that such outcome can be achieved through negative feedback loops where the dynamics
presenting first-order transitions enhances its dynamical inhibitor, which displays smooth behavior and
should be in the active phase in isolation. In particular, the coupling strength needed to switch off first-order
transitions always increases with the abruptness of such transitions and shows a non-trivial dependence with
the dynamical state of the inhibitor. This finding supports the major role of negative feedback loops in
guaranteeing the robustness and stability of biological systems [45, 46]. Indeed, our findings reproduce the
impact of coupling negative and positive feedback loops in gene regulatory networks [47, 48]. Finally, we also
find that synergistic contagion rates give rise to discontinuous transitions for mutually competing spreading
pathogens, mimicking the results observed for competing dynamics on higher-order networks [49].

Summing up, this work provides a general atlas for the emergence of abrupt transitions in intertwined
spreading processes. For the sake of analytical tractability, our model considers well-mixed populations, yet
exploring the interplay between the network of dynamical interdependencies and the complex structure of
contacts driving spreading processes remains future work. Moreover, we believe it is also worth extending this
analysis to other dynamical processes, such as synchronization [50, 51] or social dilemmas [52], to further
explore the physics arising from interacting dynamics. Overall, our results underscore the crucial role of
interdependencies in changing the nature of the transitions and the dynamical states observed for contagion
processes in isolation, thus calling for their inclusion when modeling their simultaneous propagation.
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[52] Szolnoki A and Perc M 2009 Europhys. Lett. 86 30007

10

https://doi.org/10.1038/s42005-021-00631-2
https://doi.org/10.1038/s42005-021-00631-2
https://doi.org/10.1097/00007435-200110000-00005
https://doi.org/10.1097/00007435-200110000-00005
https://doi.org/10.1371/journal.ppat.1002464
https://doi.org/10.1371/journal.ppat.1002464
https://doi.org/10.1371/journal.pone.0023467
https://doi.org/10.1371/journal.pone.0023467
https://doi.org/10.1128/mr.56.1.152-179.1992
https://doi.org/10.1128/mr.56.1.152-179.1992
https://doi.org/10.1098/rsif.2013.0414
https://doi.org/10.1098/rsif.2013.0414
https://doi.org/10.1038/s41598-022-16147-w
https://doi.org/10.1038/s41598-022-16147-w
https://doi.org/10.1038/s41588-022-01033-y
https://doi.org/10.1038/s41588-022-01033-y
https://doi.org/10.1098/rsif.2010.0142
https://doi.org/10.1098/rsif.2010.0142
https://doi.org/10.1016/j.physrep.2016.10.006
https://doi.org/10.1016/j.physrep.2016.10.006
https://doi.org/10.1098/rsta.2020.0412
https://doi.org/10.1098/rsta.2020.0412
https://doi.org/10.1098/rsos.211667
https://doi.org/10.1098/rsos.211667
https://doi.org/10.1098/rsta.2021.0119
https://doi.org/10.1098/rsta.2021.0119
https://doi.org/10.1007/s11538-022-01061-z
https://doi.org/10.1007/s11538-022-01061-z
https://doi.org/10.1103/PhysRevX.4.041005
https://doi.org/10.1103/PhysRevX.4.041005
https://doi.org/10.1103/PhysRevE.100.062308
https://doi.org/10.1103/PhysRevE.100.062308
https://doi.org/10.1103/PhysRevE.84.036106
https://doi.org/10.1103/PhysRevE.84.036106
https://doi.org/10.1098/rsos.190305
https://doi.org/10.1098/rsos.190305
https://doi.org/10.1038/nphys3457
https://doi.org/10.1038/nphys3457
https://doi.org/10.1103/PhysRevE.96.022301
https://doi.org/10.1103/PhysRevE.96.022301
https://doi.org/10.1088/1367-2630/aa8bd2
https://doi.org/10.1088/1367-2630/aa8bd2
https://doi.org/10.1080/00018732.2019.1650450
https://doi.org/10.1080/00018732.2019.1650450
https://doi.org/10.1086/226707
https://doi.org/10.1086/226707
https://doi.org/10.1038/s41467-019-10431-6
https://doi.org/10.1038/s41467-019-10431-6
https://doi.org/10.1037/0033-295X.97.3.362
https://doi.org/10.1037/0033-295X.97.3.362
https://doi.org/10.1038/srep19767
https://doi.org/10.1038/srep19767
https://doi.org/10.1016/j.physrep.2020.05.004
https://doi.org/10.1016/j.physrep.2020.05.004
https://doi.org/10.1098/rsif.2022.0043
https://doi.org/10.1098/rsif.2022.0043
https://doi.org/10.1137/21M1414024
https://doi.org/10.1137/21M1414024
https://doi.org/10.1103/PhysRevResearch.5.013201
https://doi.org/10.1103/PhysRevResearch.5.013201
https://doi.org/10.1006/obhd.1994.1055
https://doi.org/10.1006/obhd.1994.1055
https://doi.org/10.1016/j.plrev.2015.07.006
https://doi.org/10.1016/j.plrev.2015.07.006
https://doi.org/10.1371/journal.pdig.0000035
https://doi.org/10.1371/journal.pdig.0000035
https://doi.org/10.1103/PhysRevLett.111.128701
https://doi.org/10.1103/PhysRevLett.111.128701
https://doi.org/10.1016/j.chaos.2023.114264
https://doi.org/10.1016/j.chaos.2023.114264
https://doi.org/10.1103/PhysRevE.108.024305
https://doi.org/10.1103/PhysRevE.108.024305
https://doi.org/10.1016/j.ceb.2013.07.007
https://doi.org/10.1016/j.ceb.2013.07.007
https://doi.org/10.1038/nrg2102
https://doi.org/10.1038/nrg2102
https://doi.org/10.1103/PhysRevE.80.011926
https://doi.org/10.1103/PhysRevE.80.011926
https://doi.org/10.1016/S0955-0674(02)00314-9
https://doi.org/10.1016/S0955-0674(02)00314-9
https://doi.org/10.1016/j.amc.2021.126595
https://doi.org/10.1016/j.amc.2021.126595
https://doi.org/10.1038/s42005-022-01039-2
https://doi.org/10.1038/s42005-022-01039-2
https://doi.org/10.1103/PhysRevE.99.062311
https://doi.org/10.1103/PhysRevE.99.062311
https://doi.org/10.1209/0295-5075/86/30007
https://doi.org/10.1209/0295-5075/86/30007

	Pathways to discontinuous transitions in interacting contagion dynamics
	1. Introduction
	2. Interacting contagion processes
	3. Symmetric coupling between two epidemics
	4. Coupling social contagion with epidemic processes
	4.1. Unidirectional coupling
	4.2. Discontinuous transitions in inhibitory couplings

	5. Conclusions
	References


