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Hyperedge overlap drives synchronizability of systems with higher-order interactions
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The microscopic organization of dynamical systems coupled via higher-order interactions plays a pivotal
role in understanding their collective behavior. In this paper, we introduce a framework for systematically
investigating the impact of the interaction structure on dynamical processes. Specifically, we develop an
hyperedge overlap matrix whose elements characterize the two main aspects of the microscopic organization of
higher-order interactions: the inter-order hyperedge overlap (nondiagonal matrix elements) and the intra-order
hyperedge overlap (encapsulated in the diagonal elements). In this way, the first set of terms quantifies the extent
of superposition of nodes among hyperedges of different orders, while the second focuses on the number of
nodes in common between hyperedges of the same order. Our findings indicate that large values of both types of
hyperedge overlap hinder synchronization stability, and that the larger is the order of interactions involved, the
more important is their role. Our findings also indicate that the two types of overlap have qualitatively distinct
effects on the dynamics of coupled chaotic oscillators. In particular, large values of intra-order hyperedge overlap
hamper synchronization by favoring the presence of disconnected sets of hyperedges, while large values of
inter-order hyperedge overlap hinder synchronization by increasing the number of shared nodes between groups
converging on different trajectories, without necessarily causing disconnected sets of hyperedges.
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I. INTRODUCTION

In recent decades, the study of the structural organization
of complex systems and its influence on their collective be-
havior has raised increasing attention. This surge of interest
has been driven by advances in complex network science,
which aims to elucidate emergent phenomena arising from
the microscopic interactions encapsulated in the form of a
graph [1,2]. More recently, network science has focused on
higher-order, or group, interactions, recognizing their sub-
stantial impact on the dynamics and emergent properties of
interacting systems [3–5]. Research in this area spans fields
as diverse as ecology [6], social contagion [7–9], game theory
[10–12], and synchronization [13–17].

The exploration of dynamical systems with higher-order
interactions began with the development of basic models de-
signed to capture the influence of groups on the emergent
phenomena [7,15]. In order to facilitate analytical derivations,
the structures under consideration were either random hyper-
graphs, a natural extension of random graphs to higher-order
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interactions, or random simplicial complexes. The latter group
structures introduce a downward closure, meaning that all
interactions involving subgroups of nodes of an existing in-
teraction must also be present in the structure [3].

After the initial models of hypergraphs were introduced,
subsequent research evolved towards more elaborate repre-
sentations of higher-order interactions [18–26]. Early findings
in this direction revealed that the interaction strength alone
does not dictate behavioral changes in social systems [19–21].
Instead, factors such as the group size distributions and the
heterogeneity in node participation in groups were shown
to be relevant. Thereafter, the effects of different degrees of
relaxation of the downward closure in simplicial complexes
were explored. Studies by Kim et al. [23] and Burgio et al.
[24] showed that the inclusion level among different-sized
interactions influences the nature of the transition to active
states in the context of social contagion. In addition, Zhang
et al. [22] investigated the impact of higher-order interac-
tions on synchronization of Kuramoto oscillators, finding
that hypergraphs favour synchronization more effectively than
simplicial complexes. Moreover, Malizia et al. [18] examined
the correlations among hyperedges of the same size, showing
how the nature of the transition towards emergent collective
states, such as synchronization or epidemic outbreaks, varies
from first to second order depending on the overlap among
hyperedges of the same size.

2470-0045/2025/111(3)/034302(13) 034302-1 ©2025 American Physical Society

https://orcid.org/0009-0004-0247-4792
https://orcid.org/0000-0003-0991-3861
https://orcid.org/0000-0002-4361-0576
https://orcid.org/0000-0001-5204-1937
https://ror.org/012a91z28
https://ror.org/000q4gm66
https://ror.org/012a91z28
https://ror.org/03hdf3w38
https://ror.org/03a64bh57
https://ror.org/026zzn846
https://ror.org/023dz9m50
https://ror.org/03a64bh57
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.111.034302&domain=pdf&date_stamp=2025-03-03
https://doi.org/10.1103/PhysRevE.111.034302


SANTIAGO LAMATA-OTÍN et al. PHYSICAL REVIEW E 111, 034302 (2025)

All the previously mentioned works were inspired to the
structural features observed in real higher-order structures. In-
deed, at a microscopic level, real higher-order systems exhibit
considerable complexity in terms of overlap of hyperedges
[18,27–29]. Specifically, Lee et al. [28] quantified this prop-
erty by introducing the overlapness, a metric measuring the
ratio between the number of nodes belonging to hyperedges
with and without repetitions, showing that this ratio greatly
varies between real-world data sets. Deepening in this hetero-
geneity, Landry et al. [27] employed a set of metrics to show
that some real-world structures resemble simplicial complexes
whereas others show an organization closer to that of random
hypergraphs. Finally, Malizia et al. [18] introduced a measure,
namely the intra-order hyperedge overlap, to quantify the
overlap between hyperedges of the same size and showed a
wide range of values for this metric in real-world data sets.

In this paper, we take into account both the extent of
the downward closure (which marks the difference between
simplicial complexes and random hypergraphs) and the over-
lap among hyperedges of the same order of interactions. We
characterize the former by means of the inter-order hyperedge
overlap and the latter in terms of the intra-order hyperedge
overlap. To this aim, we introduce a general framework to
characterize the hyperedge overlap of higher-order structures:
the overlap matrix. Equipped with this framework, our work
aims to address three main questions: (i) the hierarchy of the
importance of the two kinds of overlaps in synchronization
dynamics, (ii) the distinct and combined effects of intra-order
and inter-order overlaps, and (iii) the consistency of each type
of overlap’s influence on different dynamical systems.

The rest of the paper is organized as follows. In Sec. II
we introduce the overlap matrix. In Sec. III we illustrate
the model for synchronization dynamics and highlight the
significance of the spectrum of eigenvalues of the Lapla-
cian matrix. Thereafter, in Sec. IV we analyze the effect of
hyperedge overlap on synchronization dynamics of coupled
nonlinear oscillators. In particular, in Sec. IV A we consider
a general scenario with two-body, three-body, and four-body
interactions and analyze the stability of the synchronous state
for structures where the elements of the overlap matrix take
values at the extremes of their range of definition. Our findings
indicate that an increase in the overlap leads to a decrease
in synchronizability. Furthermore, we elucidate a hierarchy
of importance among the two types of overlap. Finally, in
Secs. IV B and IV C, we consider the simplest case of a struc-
ture with non trivial inter-order and intra-order hyperedge
overlap, namely, a structure with interactions up to three-
body. We observe that both overlaps significantly influence
the spectrum of eigenvalues of the Laplacian matrix, and have
a qualitatively distinct impact on the stability of synchroniza-
tion. In particular, we find that, for a given order, there is a
close relation between intra-order hyperedge overlap and the
connectedness of the set of hyperedges. Finally in Sec. V we
round off the article by discussing the main findings and some
possible directions for future research.

II. HYPEREDGE OVERLAP

In a complex system, interactions may involve two or more
units. Two-body or pairwise interactions can be modeled by

networks, whereas, to represent multibody or higher-order
interactions, hypergraphs and simplicial complexes can be
used. A hypergraph H = (N , E ) is defined as a pair of two
sets: the set N that is composed of N = |N | nodes, and the set
E that contains a number E = |E | of hyperedges. A hyperedge
e ∈ E of order m, in short an m-hyperedge, is defined as a
subset of m + 1 nodes in N with m = |e| − 1. Thus, for each
order m, the m-hyperedges capture the interactions of groups
of size m + 1. In this way, pairwise interactions involving
two nodes correspond to hyperedges of order 1, interactions
between three nodes are represented by hyperedges of order
2, and so on for larger groups. A simplicial complex is a
special case of hypergraph subject to the inclusion property
(also known as downward closure), which means that all the
possible subgroups of nodes appearing in a hyperedge are also
connected by hyperedges of the structure.

A. Characterizing nodes and their interactions

To characterize the microscopical organization of hyper-
graphs, we first need to introduce a few definitions. We begin
by characterizing the structure of group interactions of each
node i by defining E (m)

i as the set of hyperedges e of order m
to which node i belongs. The number of hyperedges of order
m to which i belongs to is the so-called generalized degree
of node i, namely, k(m)

i , and corresponds to the cardinality of
E (m)

i , that is, k(m)
i = |E (m)

i | [30].
Next, in order to encode the information about the inter-

actions at all orders, we consider a set of adjacency tensors
A(m) with m = 1, . . . , M, where M is the highest order of
group interactions in the structure. This way, we have that
a(m)

i, j1,..., jm
= 1 if there exists an m-hyperedge that contains

nodes i, j1 . . . , jm, and a(m)
i, j1,..., jm

= 0 otherwise. For each order
m we also consider a generalized Laplacian matrix L(m) [31]
with entries given by

l (m)
i j = mk(m)

i δi j − b(m)
i j , (1)

where b(m)
i j represents the number of connections of order m in

which both i and j appear:

b(m)
i j = 1

(m − 1)!

N∑
j2,..., jm

a(m)
i, j1, j2,..., jm

. (2)

B. Characterizing the structure of hyperedges

In classical graphs, nodes can be connected only in pairs,
via links (1-hyperedges). Thus, if, as usual, there are no mul-
tiple links connecting the same pair of nodes, each link of a
node connects it with a different neighbor. However, when
a structure has higher-order interactions, a node i may be
connected to the same node j via different hyperedges. Quan-
tifying the number of repeated neighbors among hyperedges,
namely, their degree of overlap, is fundamental to understand
the microscopic organization of different structures.

Random hypergraphs and simplicial complexes [3] ex-
emplify the variability in the degree of overlap between
hyperedges of different orders. In fact, in random hyper-
graphs, hyperedges are uncorrelated, meaning that in the
thermodinamic limit, N → ∞, the probability that two nodes
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FIG. 1. Inter-order and intra-order hyperedge overlap as fundamental components of the overlap matrix. (a)–(c) Three configurations
of seven nodes, nine 1-hyperedges and two 2-hyperedges displaying different levels of inter-order hyperedge overlap: (a) I (1,2) = 0; (b)
I (1,2) = 0.5; (c) I (1,2) = 1. (d)–(f) Three configurations with four 2-hyperedges displaying different levels of the intra-order hyperedge overlap
for node i (k(2)

i = 4): (d) T (2)
i = 0; (e) T (2)

i = 0.5; (f) T (2)
i = 1. (g)–(h): Schematic representation of the overlap matrix for hypergraphs with

M = 3. Panel (g) shows a configuration with maximal overlap, and panel (h) shows a configuration with minimal overlap.

share more than one hyperedge becomes negligible. Con-
trarily, in simplicial complexes, where the inclusion property
holds, when a set of nodes conforms a hyperedge, all possible
subsets of nodes are also linked by hyperedges, and so the
overlap is large.

Repeated neighbors can be found either considering two
hyperedges of the same order or of different orders. The
two cases are dealt with different measures, in the following
indicated as inter-order and intra-order hyperedge overlap.

1. Inter-order hyperedge overlap

To quantify the extent of overlap between interactions of
order m and those of order n, with m < n, we consider the
set of possible m-cliques within the n-hyperedges, denoted
as F (E (n) ). Then, we count how many of those m-cliques
correspond to actual m-hyperedges of the structure, i.e.,
|E (m) ∩ F (E (n) )|. At this point, we define the inter-order hy-
peredge overlap I (m,n) as the fraction of existing m-cliques
over the number of possible m-cliques, namely,

I (m,n) = |E (m) ∩ F (E (n) )|
|F (E (n) )| . (3)

The former expression spans from I (m,n) = 0 (when there
are no m-hyperedges that correspond to one of the pos-
sible m-cliques in the set of n-hyperedges) to I (m,n) = 1
(when all the possible m-cliques within the n-hyperedges are

m-hyperedges). Note that in case m > n, Eq. (3) becomes
I (m,n) = 0.

As an example, Figs. 1(a)–1(c) show three different
configurations for a hypergraph of seven nodes with nine
1-hyperedges and two 2-hyperedges. Here, the extent of the
inter-order overlap between 1-hyperedges and 2-hyperedges,
i.e., m = 1 and n = 2, varies from the fully nonoverlapping
case shown in Fig. 1(a) to the extreme case of maximal hy-
peredge overlap shown in Fig. 1(c). In particular, we have
in Fig. 1(a) |F (E (2) )| = 6 and |E (1) ∩ F (E (2) )| = 0, resulting
in I (1,2) = 0. In Fig. 1(b) the inter-order hyperedge overlap
increases to I (1,2) = 0.5 since |E (1) ∩ F (E (2) )| = 3. Finally,
in Fig. 1(c) the maximal overlap (I (1,2) = 1) is obtained con-
sidering that |E (1) ∩ F (E (2) )| = |F (E (2) )| = 6. For the sake
of illustration, the example of Fig. 1 refers to a structure
having only 1-hyperedges and 2-hyperedges.

2. Intra-order hyperedge overlap

To take into account the case where repeated nodes appear
in hyperedges of the same order, we consider the local intra-
order hyperedge overlap defined in [18]:

T (m)
i = 1 − S (m)

i − S (m),−
i

S (m),+
i − S (m),−

i

, (4)

where S (m)
i represents the number of unique neighbors of a

node i that are found in its k(m)
i hyperedges of order m � 2,
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and S (m),−
i (S (m),+

i ) indicates the minimum (maximum) pos-
sible value for the number of such nodes (the expressions
for S (m),−

i and S (m),+
i are analytically derived in [18]). The

quantity T (m)
i spans between T (m)

i = 0 indicating that there
is minimum overlap between the m-hyperedges to which
node i belongs, and T (m)

i = 1 corresponding to the maximum
overlap.

As an example, in Figs. 1(d)–1(f) three configurations
where the node i has the same number of 2-hyperedges
(k(2)

i = 4) are shown. In Fig. 1(d) the overlap between the
hyperedges is minimum, since S(2)

i = S(2),+
i = 8. In Fig. 1(e)

the node intra-order hyperedge overlap is, instead, T (m)
i = 0.5

as S(2)
i = 6, S(2),+

i = 8, and S(2),−
i = 4. Finally, the full overlap

case is depicted in Fig. 1(f), where S(2)
i = S(2),−

i = 4.
To assess the level of intra-order hyperedge overlap across

the entire hypergraph, we calculate the weighted average of
T (m)

i throughout all nodes:

T (m) =
∑

i k(m)
i T (m)

i∑
i k(m)

i

. (5)

3. The overlap matrix

To characterize the hyperedge overlap in an hypergraph
with interactions up to order M, we should consider all
the M − 1 measures of intra-order overlap, and all the
M(M − 1)/2 measures of inter-order overlap. For a compact
representation of such measures, we introduce the overlap
matrix O = {o(m,n)} that embodies all the possible types of
overlap of different order, as follows:

O =

⎛
⎜⎜⎜⎜⎜⎝

0 I (1,2) I (1,3) . . . I (1,M )

I (2,1) T (2) I (2,3) . . . I (2,M )

I (3,1) I (3,2) T (3) . . . I (3,M )

...
...

...
. . .

...

I (M,1) I (M,2) I (M,3) . . . T (M )

⎞
⎟⎟⎟⎟⎟⎠

. (6)

Note that since, as mentioned above, T (m)
i is only defined for

m � 2 we have set the (1, 1) entry of the overlap matrix equal
to 0 in order to capture that two-body (pairwise) interactions
do not overlap at all. Moreover, the overlap matrix is an upper
triangular matrix, since I (m,n) = 0 in case m > n.

In Figs. 1(g) and 1(h), for the case M = 3, we exemplify
the configurations yielding maximal [Fig. 1(g)] and minimal
[Fig. 1(h)] values of the entries of the overlap matrix. We note
that, as the overlap measures are not independent each other,
not all extreme values can be reached. Specifically, when there
is a nonzero inter-order overlap with m- and n-hyperedges,
then for the set of m-hyperedges we can never find T (m) =
0. In particular, in the case when I (m,n) = 1, the number of
unique neighbors that a node i can have through hyperedges
of order m (S(m)

i ) depends on the number of unique neighbors
that a node i has through hyperedges of order n (S(n)

i ) as

S(m)
i = S(n)

i + m
(
k(m)

i − X
)
, (7)

with X being the number of different interactions of or-
der m that the node i can have with the neighbors through

hyperedges of order n, X = (S(n)
i
m

)
. Therefore, the minimum

intra-order hyperedge overlap of a node i with S(n)
i unique

neighbors through hyperedges of order n
(
called T (m)

i

∣∣
k(n)

i

)
is

given by

T (m)
i

∣∣
k(n)

i
= 1 − S(n)

i + m
(
k(m)

i − (S(n)
i
m

)) − S (m),−
i

S (m),+
i − S (m),−

i

. (8)

Note also that there is another interdependence between the
overlap measures constraining the values that it is possible
to obtain. In fact, to reach I (m,n) = 1, one must have that
k(m)

i �X . To illustrate this, let us consider m = 2 and m = 3,
and derive the analytical expressions for T (3) = 0 and T (3) =
1. In the case of minimum intra-order hyperedge overlap, we
use in Eq. (8) the fact that S(3)

i = S(3,−)
i = �y(3)� [18], where

y(3) is the solution of y(3)(y(3) − 1)(y(3) − 2) = 6k(3)
i . In the

case of maximum intra-order hyperedge overlap, instead, in
Eq. (8) we consider that S(3)

i = S(3,−)
i = 3k(3)

i . The outcome
of this analysis is illustrated in Figs. 2(a) and 2(b). The red
dots indicate the minimum 2-hyperedge connectivity required
to have I (m,n) = 1 for a given k(3)

i , and the color code repre-
sents the minimum possible value of 2-hyperedge intra-order
overlap in terms of both generalized connectivities (k(2)

i , k(3)
i ).

Let us notice that the minimum intra-order hyperedge overlap
of 3-hyperedges needs larger values of 2-hyperedges connec-
tivity than in the case of maximum intra-order overlap. These
constraints become increasingly complex with the introduc-
tion of additional orders of interaction.

III. MODEL OF DYNAMICAL SYSTEMS COUPLED
THROUGH A HYPERGRAPH

Now we turn our attention to the model of dynamical sys-
tems coupled through hypergraphs, focusing on the stability
analysis of synchronous (homogeneous) solutions. Let us start
by considering the following generic system of N oscillators
coupled via m-body interactions with m = 1, . . . , M [16]:

ẋi = f (xi ) +
M∑

m=1

σ (m)
∑

j1,.., jm

a(m)
i j1... jm

g(m)(xi, x j1 , . . . , x jm ), (9)

where xi is the n-dimensional state vector associated to each
node i, and f (xi ) describes the local dynamics, assumed iden-
tical for all units. The functions g(m) capture the coupling
mechanisms between units at each order m of interaction,
whereas the constant parameters σ (m), m = 1, . . . , M repre-
sent the coupling strengths associated to these interactions,
and a(m)

i j1... jm
are the entries of the corresponding adjacency

tensor A(m).
To guarantee the existence and invariance of a synchronous

solution of the type x1 = · · · = xN = xs, we assume that the
coupling functions are noninvasive:

g(m)(x, x, . . . , x) ≡ 0, m = 1, . . . , M. (10)

However, this is not enough for the stability of the syn-
chronous solution that requires further conditions, as it
depends on the interplay between the local dynamics and the
structure of interactions between units. To unveil this interplay
and determine the conditions for synchronization stability, as
in [16] we start by considering a small perturbation around
the synchronous state, i.e., for each node i we consider
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FIG. 2. Constraints between elements of the hyperedge overlap matrix. Minimum T (2)
i of a node i with generalized connectivity k(2)

i and
k(3)

i provided I (2,3) = 0. Panel (a) shows the case where T (3) = 1, and panel (b) shows the case where T (3) = 0. The red dots represent the
minimum k(2)

i required to have I (2,3) = 0.

δxi = xi − xs. When interactions between units are exclu-
sively pairwise, the former perturbations can be expressed
as a linear combination of the eigenvectors of the network
Laplacian matrix L(1), denoted as ηi. The dynamics of the
component η1 (corresponding to the zero eigenvalue λ1 = 0)
is responsible for the motion along the synchronous manifold,
while the dynamics of the remaining components correspond-
ing to ηi (i = 2, . . . , N) represent the modes transverse to
the synchronization manifold. The linear stability of the syn-
chronous state requires that the dynamics of these N − 1
transverse modes damp out. This condition can be checked by
studying the maximum Lyapunov exponent associated to the
transverse modes. In the presence of higher-order interactions,
the transverse modes are usually intertwined, and the study
of synchronization stability has to be performed on a set of
linear equations in a number equal to the size of the structure
(the number of nodes). Nevertheless, for a large class of cou-
pling functions, the dynamics of the transverse modes can be
decoupled, allowing the calculation of the stability conditions
from a single parameter variational equation, having the same
dimension of the dynamical system at work in each (isolated)
node. This decoupling can be achieved by considering the
class of diffusive-like coupling functions, for which

g(m)
(
xi, x j1 , . . . , x jm

)= h(m)
(
x j1 , . . . , x jm

)− h(m)(xi, . . . , xi ),

(11)

under the assumption of natural couplings [16],

h(m)(x, . . . , x) = h(1)(x), m = 1, . . . , M. (12)

Under these conditions, the parametric equation characteriz-
ing the dynamics of the transverse modes, and therefore the
synchronization stability of system (9), reads

η̇ = [Jf (xs) − αJh(1)(xs)]η, (13)

where Jf (xs) and Jh(1)(xs) represents the Jacobian matrix of
the local dynamics and the coupling functions, respectively,
both calculated around the synchronous solution xs. From
this equation we compute the maximum Lyapunov exponent
as a function of the parameter α, namely the master stabil-

ity function �max = �max(α) characterizing the stability of
synchronization [32]. In more detail, synchronization stability
requires that the master stability function takes negative val-
ues in correspondence of the points α = {λ2(L̄), . . . , λN (L̄)},
where L̄ is the effective Laplacian [16,31], defined as

L̄ =
M∑

m=1

σ (m)L(m). (14)

The eigenvalues λn(L̄), with n = 1, . . . , N , of the effective
Laplacian matrix (which is, by construction, positive semidef-
inite) are labeled throughout the paper in ascending order of
magnitude, i.e., 0 = λ1(L̄) < λ2(L̄) � · · · � λN (L̄).

The properties of the master stability function �max =
�max(α) determine the class of the system of coupled oscilla-
tors. Specifically, as discussed in [17,33,34] one can identify
three classes of systems:

Class I systems: �max is always positive, regardless of α.
Consequently, the system remains incoherent.

Class II systems: As shown in Fig. 3(a), �max crosses the
α axis once at αc. For synchronization stability, it is required
that λ2(L̄) > αc.

Class III systems: As shown in Fig. 3(b), the master sta-
bility function crosses the α axis at two points, α1 and α2. In
this case, the stability region is bounded by two conditions:
λ2(L̄) > α1 and λN (L̄) < α2.

In this paper, we consider a system of N coupled Rössler
oscillators that, depending on the coupling functions used
in (9), can yield either a class II or class III system. The
individual dynamics of a node i, f (xi ), with xi = (xi, yi, zi )
are described by the following systems of equations:

ẋi = −yi − zi,

ẏi = xi + ayi,

żi = b + zi(xi − c), (15)

where the parameters are fixed to a = 0.2, b = 0.2, and c = 9,
so that the isolated dynamics is chaotic. A class II sys-
tem is obtained for instance when g(1)(xi, x j ) = h(1)(x j ) =
[0, y3

j , 0]T and g(2)(xi, x j, xk ) = h(2)(x j, xk ) = [0, y2
j yk, 0]T ,
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FIG. 3. Synchronization in a hypernetwork of Rössler oscillators. (a)–(b) Master stability function calculated for different coupling
functions. (a) Class II system given h(1)(x j ) = [0, y3

j , 0]T and h(2)(x j, xk ) = [0, y2
j yk, 0]T . (b) Class III system given h(1)(x j ) = [x3

j , 0, 0]T

and h(2)(x j, xk ) = [x2
j xk, 0, 0]T . (c)–(d) Phase diagram of a system of coupled Rössler oscillators, displaying the synchronization error in terms

of the 1-hyperedge and 2-hyperedge coupling strength E (σ (1), σ (2) ). (c) Class II system given in accordance with (a). (d) Class III system in
accordance with (b). The red lines correspond to the theoretical predictions of the synchronization threshold given by the MSF approach. In
both panels the structure has N = 100, k(1) = 6, k(2) = 3, and has zero hyperedge overlap (I (1,2) = 0, T (2) = 0).

that is, when the nodes are coupled by their second component
y:

ẋi = −yi − zi,

ẏi = xi + ayi + σ1

N∑
j=1

a(1)
i j

(
y3

j − y3
i

)

+ σ2

N∑
j=1

N∑
k=1

a(2)
i jk

(
y2

j yk − y3
i

)
,

żi = b + zi(xi − c), (16)

Conversely, a class III system is obtained for instance when
g(1)(xi, x j ) = h(1)(x j ) = [x3

j , 0, 0]T and g(2)(xi, x j, xk ) =
h(2)(x j, xk ) = [x2

j xk, 0, 0]T , such that the oscillators are
coupled through the variable x:

ẋi = −yi − zi + σ1

N∑
j=1

a(1)
i j

(
x3

j − x3
i

)

+ σ2

N∑
j=1

N∑
k=1

a(2)
i jk

(
x2

j xk − x3
i

)
,

ẏi = xi + ayi,

żi = b + zi(xi − c), (17)

To monitor synchronization among the chaotic units we use
the following synchronization error:

E (t ) =
⎛
⎝ 1

N (N − 1)

N∑
i, j=1

||x j − xi||2
⎞
⎠

1
2

, (18)

which vanishes in the case of complete synchronization, and
takes large values for incoherent behavior. In particular, we let
system (16) or (17) evolve for a transient of duration tr = 750

and, afterwards, calculate the average of the error defined as

〈E〉 = 1

T

∫ tr+T

tr

E (t ) dt (19)

for a time window of duration T = 750.
In Figs. 3(c) and 3(d) we illustrate an example of synchro-

nization in a system of N = 100 Rössler nodes interacting
in a random hypergraph with k(1) = 6, k(2) = 3, I (1,2) = 0,
and T (2) = 0. In particular, the average error 〈E〉 is studied
as a function of the two coupling strengths σ1 and σ2, that
is, 〈E〉(σ1, σ2). Figure 3(c) shows the results for the class II
system, while Fig. 3(d) for the class III system. The values
of the average error 〈E〉(σ1, σ2) obtained from the numerical
simulations are color coded, while the red lines represent the
theoretical predictions of the boundaries of the region where
the synchronous solution is stable. Numerical simulations are
in agreement with the theoretical predictions based on the
master stability function approach.

The class II case, depicted in Fig. 3(c), displays a region of
incoherence in correspondence of low values of the two cou-
pling strengths. As at least one of the two coupling strength is
increased, we find a region where synchronization is stable.
The transition from incoherent behavior to synchronization
also appears in Fig. 3(d) for the class III system (but shifted
according to α1 �→ αc). However, in this case, there is also
another transition, observed for large values of the coupling
strengths, where synchronization stability is lost and the sys-
tem behaves again in an incoherent way. As expected, we note
that the region of stability is unbounded for the class II system
and bounded for the class III system.

For the sake of brevity, hereafter we analyze only the
class III scenario, since the class II behavior straightforwardly
arises when relaxing the constraint on the last eigenvalue. In
fact, every consequence of the constraint λ2(L̄) > α1 is also
applicable to the constraint λ2(L̄) > αc, via a shift α1 �→ αc.

Note that the significance of the second eigenvalue of the
Laplacian extends beyond the dynamical systems of coupled
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FIG. 4. Influence of the hyperedge overlap on the spectrum of
the effective Laplacian. Spectrum of the effective Laplacian for
two regular higher-order structures with N = 100, k(1) = 6, k(2) = 6,
and k(3) = 4. In the maximum overlap structure {T (2),T (3),I (1,2),

I (1,3)I (2,3)} = {1, 1, 1, 1, 1}, and in the random structure {T (2),T (3),

I (1,2),I (1,3)I (2,3)} ≈ {0, 0, 0, 0, 0}.

chaotic oscillators. In the higher-order model of Kuramoto
oscillators sharing identical natural frequencies, it governs
the rate at which the system recovers its collective state after
a perturbation [31], with larger values of λ2(L̄) resulting in
faster convergence to the equilibrium state.

In the rest of the paper, we will refer to the second eigen-
value of the effective Laplacian matrix in Eq. (14) as the
algebraic connectivity, generalizing the notion for systems
with only pairwise interactions. Overall, the spectrum of the
effective Laplacian matrix is important for characterizing the
dynamics of numerous systems [34].

IV. RESULTS

Once introduced the essential tools to carry out our
analysis, in this section we focus on how the microscopic ar-
rangement of higher-order interactions, driven by the overlap
matrix defined in Eq. (6), influences the stability of syn-
chronous states.

A. Effect of hyperedge overlap on the spectrum
of the effective Laplacian matrix

In this section, we investigate the impact of hyperedge
overlap on synchronization stability by examining its in-
fluence on the spectrum of the effective Laplacian matrix.
To this end, we consider structures with interactions up to
order M = 3, i.e., encompassing two-body, three-body, and
four-body interactions. Furthermore, in Eq. (14) we assign
equal relevance to the interactions across all orders by setting
σ (m) = γ (m)/k(m) and γ (m) = 1 (m = 1, 2, 3). To simplify our
notation, we define λ̃n ≡ λn(L̄) for this scenario, and keep
λn(L̄) for the general case of γ (m) = 1.

We begin analyzing two configurations where the over-
laps take values at the extremes of the interval of definition.
In Fig. 4 we compare the spectrum of the effective Lapla-
cian matrix of a random hypergraph, displaying almost zero
overplap, o(m,n) ≈ 0, ∀ m, n � 3, with that of a hypergraph
designed to have maximum overlap (o(m,n) = 1, ∀ m, n � 3
but m = n = 1). Both structures share the same number of

nodes (N = 100) and the same generalized degree distribu-
tions, specifically k(1) = 6, k(2) = 6, and k(3) = 4. Beyond the
first eigenvalue that, being zero by definition, is the same
in both cases, the plots reveal significant differences in the
two spectrums. In more detail, we find a large discrepancy in
the algebraic connectivity, λ̃2, which is much larger for the
random hypergraph. This corroborates the findings reported
in [22], where it is shown that random hypergraphs facilitate
synchronization to a greater extent than simplicial complexes,
which, in fact, correspond to structures with o(m,n) = 1, ∀m, n
but m = n = 1 (note that in [22] a system of coupled phase-
only oscillators where synchronization only depends on the
algebraic connectivity is considered). Regarding the rest of the
spectrum we observe that, in the random structure, the value
of eigenvalues increases smoothly as the rank progresses. In
contrast, in the maximum overlap scenario, the spectrum, after
a first increase, undergoes an abrupt shift between the eigen-
values λ̃20 and λ̃21. Moreover, for λ̃ > λ̃20, the eigenvalues are
larger than the corresponding ones in the random hypergaphs.
This is a consequence of the mesoscale organization that is
necessary to achieve a maximum intra-order overlap configu-
ration. More specifically, to have a regular hypergraph with
k(2) = 6 and k(3) = 4 and maximum intra-order hyperedge
overlap for both orders m = 2 and m = 3, i.e., T (2) = T (3) =
1, the nodes must be arranged on 20 subsets of five nodes, with
each of these subsect being fully connected by three- and four-
body interactions. Consequently, the 20 smallest eigenvalues
of the spectrum correspond to the first effective eigenvalue of
each subset of five nodes, while the next 20 ones correspond
to the effective algebraic connectivity of each subset of five
nodes. The small value of the first (which would be zero in the
absence of pairs) and the large value of the second indicate
that, while synchronization stability is hindered on a global
scale, there is a tendency towards local synchronization.

The two scenarios depicted in Fig. 4 illustrate configura-
tions in which all elements in the overlap matrix (6) are either
entirely ones or entirely zeros [except for the element (1,1)].
To better illustrate the interplay between different elements of
the overlap matrix, we now consider some configurations with
various combinations of ones and zeros within the structure
of the overlap matrix. Note that, assuming that the elements
of O can take only binary values, there are 25 = 32 possible
different overlap matrices. Here we focus on eight of them
obtained by varying only three elements of the overlap matrix,
namely, {T (2), T (3), I (2,3)}, while we keep I (1,2) ≈ I (1,3) ≈ 0.
These eight combinations are represented in Fig. 5(a), at
the corners of a cube. The color code is used to represent
the magnitude of the algebraic connectivity λ̃2. Notably, the
configurations at the corners {0, 0, 1} and {1, 0, 1} are impos-
sible to reach due to the aforementioned constraints [Eq. (8)]
between intra-order hyperedge overlaps in case that the inter-
order hyperedge overlap is maximum.

In Fig. 5(b) we show the spectrum of eigenvalues for the
six possible configurations analyzed. As shown, the spec-
trum of the configurations {0, 0, 0} and {1, 1, 1} exhibit a
behavior similar to that of the cases with minimum and max-
imum hyperedge overlap, respectively, shown in Fig. 4. As
already noted, the lowest algebraic connectivity λ̃2 is found
for the structure with the highest degree of overlap ({1, 1, 1}),
followed by the configuration with {1, 1, 0}. In the maximum
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FIG. 5. Hyperedge overlap and spectrum of the effective Laplacian. (a) Space of parameters {T (2),T (3),I (2,3)} for hypergraphs with
M = 3. In the corners, the color code represents the value of the second eigenvalue of the effective Laplacian given γ = 1, namely, λ̃2.
(b) Spectrum of the effective Laplacian for regular higher-order structures at the extreme positions in the {T (2),T (3),I (2,3)} space. The
considered hypergraphs have N = 100, k(1) = 2, k(2) = 6 and k(3) = 4 except for the {1, 0, 1} one, which has k(2) = 12. In all cases, the
hypergraphs have {I (1,2),I (1,3)} ≈ {0, 0}.

overlap structure {1, 1, 1}, the subsets of nodes fully con-
nected by 2-hyperedges coincide with those fully connected
by 3-hyperedges due to the downward closure. In contrast, in
the structure {1, 1, 0}, the subsets of nodes fully-connected
by 2-hyperedges and 3-hyperedges are intertwined, so that
the stability of the synchronous state (being a collective state
shared by all nodes this represents global synchronization)
is fostered, but the tendency towards local synchronization
is hindered. The configuration {0, 1, 0} has random 3-body
interactions, unlike the former {1, 1, 0}. For this reason, this
configuration also fosters global synchronization stability,
since it leads the third lowest value of λ̃2. Furthermore, the
random three-body interactions do not interfere with four-
body interactions, which leads to a more clearly defined
clustered mesoscale configuration, resulting in eigenvalues of
the second group (those after the abrupt shift) larger than in
the configuration {1, 1, 0}. Finally, the configurations {1, 0, 0}
and {1, 0, 1} exhibit a similar spectrum, although the former
displays a larger degree of inter-order hyperedge overlap,
which impairs stability of synchronization.

B. Isolated and combined effect of inter- and intra-order
hyperedge overlaps

In this section, we study the simplest scenario where inter-
and intra-order hyperedge overlaps can be defined, namely
hypergraphs with two- and three-body interactions (M = 2).
In this case, the overlap matrix is 2×2 and, thus, the only
control parameters are the inter-order hyperedge overlap T (2)

and the intra-order hyperedge overlap I (1,2). Here we want
to conveniently adjust these two parameters to assess their
isolated and combined effects on the spectrum of the effective
Laplacian. This approach allows for a more comprehensive
analysis compared to the limited set of configurations with
distinct overlap values examined in Sec. IV A. In fact, in this
case we are able to tune the parameters to cover the full range
of possible values rather than considering only binary values
of overlap. To this aim, since random hypergraphs models
do not allow full control of the values of hyperedge overlap,
we need a synthetic model covering the full range of values
[0, 1] for both T (2) and I (1,2) (detailed information on the
construction of this synthetic hypernetwork can be found in
the Appendix). Note that, also in this case, to ensure equal

relevance across different orders, we set σ (m) = γ (m)/k(m) and
γ (m) = 1 for m = 1, 2. Finally, we mention that our results
are averaged over a number of 100 hypernetworks for each
pair of values in the {T (2), I (1,2)} space. Each hypernetwork
has N = 100 nodes, and generalized degrees k(1) = 6 and
k(2) = 3.

We begin our analysis of the influence of the hyperedge
overlap on the stability of the synchronous state in these
hypergraphs by showing in Fig. 6(a) the algebraic connectivity
λ̃2 as a function of T (2) and I (1,2). The color code shows
values of λ̃2 depending almost symmetrically on both metrics,
pinpointing that inter- and intra-order hyperedge overlap have
an equivalent and complementary impact. Furthermore, the
insights obtained from Figs. 4 and 5 are corroborated, since
in the case when both hyperedge-overlap metrics are at their
minimum value, namely when T (2) = I (1,2) = 0, the second
eigenvalue of the effective Laplacian is at its maximum.

As discussed in Sec. III, for class III systems, stability
of the synchronous state depends on λ2(L̄) and λN (L̄). In
particular, the condition for the algebraic connectivity reads
λ2(L̄) > α1. In the case that, γ (m) = γ , m = 1, . . . , M, we
have that λ2(L̄) = γ λ̃2. For this reason, in Fig. 6(a) we show
the contour lines corresponding to γ λ̃2 = α1, namely, the
borders between the region of stability and instability. For
each γ , values of the inter- and intra-order overlap above
the corresponding contour line yield λ2(L̄) < α1, thus indi-
cating that the synchronous state is not stable. As expected,
the stability region increases as the parameter γ increases.
The second condition for synchronization stability, namely,
λN (L̄) < α2, is analyzed in Fig. 6(b), showing the values of
λ̃N for γ = 1 as a function of T (2) and I (1,2), as well as the
contour lines γ λ̃N = α2 for three different values of γ . In this
case, the two overlaps exert a different effect on λ̃N , with large
intra-order hyperedge overlap resulting in the highest values.
Moreover, the worst scenario for stability of the synchronous
state occurs for low values of the intra-order hyperedge
overlap and medium to high values of inter-order hyper-
edge overlap. Nonetheless, the relative variation of λ̃N across
the parameter space is less pronounced than that observed
for the second eigenvalue λ̃2. This consideration is con-
firmed by the analysis of the eigenvalue ratio λ̃2/λ̃N shown
in Fig. 6(c), whose dependency on the hyperedege overlap is
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FIG. 6. Inter-order and intra-order hyperedge overlap impact the conditions for synchronization stability. (a)–(c) Average λ̃2, λ̃N and λ̃2/λ̃N

in the {T (2),I (1,2)} space over 100 sets of structures, each with N = 100 nodes and connectivity k(1) = 6 and k(2) = 3. The contour lines in
panels (a) and (b) correspond to γ λ̃2 = α1 and γ λ̃N = α2, respectively.

similar to the one observed for the second eigenvalue λ̃2 in
Fig. 6(a).

C. The qualitative impact of intra-order hyperedge overlap

So far, in both Secs. IV A and IV B we have fixed the
coupling strengths σ (1) and σ (2). However, it is also important
to analyze the effect of the hyperedge overlap within a contin-
uous variation of these parameters. We carry out this analysis
for the two configurations with extreme values of the over-
lap, namely, {T (2) = 0, I (1,2) = 1} and {T (2) = 1, I (1,2) = 1}.
The results are shown in Figs. 7(a) and 7(b), which illustrate
the stability region predicted by the master stability function
for Eq. (17) in the parameter space (σ (1) − σ (2)). Remarkably,
the two configurations show different shapes for the stability
region, indicating a qualitatively distinct behavior associated
to the two systems. For the structure with minimum intra-
order hyperedge overlap, the synchronous state can be stable
even when σ1 is exceedingly small or zero, indicating the
presence of weak (or even null) pairwise interactions. We
observe that synchronization can be induced though a fine

tuning of the coupling strength associated to three-body in-
teractions, σ2, since there exist lower and upper bounds of this
parameter that guarantee synchronization stability. In contrast,
for the structure with maximal intra-order hyperedge overlap,
the first boundary (marking the transition from incoherent
behavior to synchronization) becomes almost vertical such
that for low values of σ1 synchronization becomes impossible
to achieve. The qualitative difference of the two scenarios can
be exemplified by fixing a small value for σ1, e.g., σ1 = 10−4,
and letting σ2 increases from zero. This corresponds to move,
in the diagrams of Figs. 7(a) and 7(b), from the bottom to
the upper part, along the vertical line σ1 = 10−4. When the
structure has no intra-order correlations as in Fig. 7(a), there is
a finite region of stability, consistently with the typical behav-
ior of class III systems, whereas, when the degree of overlap
in the structure is larger as in Fig. 7(b), synchronization is
impossible to obtain regardless of the value of the coupling
strength σ2. The latter behavior resembles that associated with
class I systems on pairwise networks, for which the system
dynamics remains incoherent irrespectively of the strength of
the interactions.

FIG. 7. Intra-order hyperedge overlap may change the shape of the region of synchronization stability. (a)–(b) Region of synchronization
stability (black area) for a system of Rössler oscillators with h(1)(x j ) = [x3

j , 0, 0]T and h(2)(x j, xk ) = [x2
j xk, 0, 0]T . (a) Hypergraph with

{T (2),I (1,2)} = {0, 1}. (b) Hypergraph with {T (2),I (1,2)} = {1, 1}. (c) Average � in the {T (2),I (1,2)} space over 100 sets of structures.
(d) Scatter plot (in blue) of the second eigenvalue of each of the sets of 2-hyperedges, that is, λ2(L(2) ), as a function of T (2). Fraction φ

of structures with a given T (2) and λ2(L(2) ) = 0 (in green). (e) Values of � in the {T (2),I (1,2)} space. In all panels the structures have N = 100,
k(1) = 6, k(2) = 3.
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To shed more light on this important qualitative difference
in the dynamical behavior, let � be the area of the region of
stability, namely, the black region of Fig. 7(a) or 7(b). More
precisely, the quantity � is computed by integrating the con-
tour function of the stability region, denoted as c(x, y), after a
change of reference frame, from logarithmic scale σ (1), σ (2) ∈
[10−6, 100] (m = 1, 2) to linear scale x, y ∈ [0, 1]:

� =
∫ 1

0

∫ 1

0
c(x, y) dx dy. (20)

The average value of �, computed by considering 100 hyper-
graphs for each pair of values of the inter-order and intra-order
hyperedge ovelap, is shown in Fig. 7(c). We notice that, for
high values of the intra-order hyperedge overlap, the contour
lines for � = 0.25 and � = 0.27 look similar to the ones of
the eigenvalue ratio shown in Fig. 6(c). Conversely, for low
values of intra-order hyperedge overlap, the contour lines are
nearly vertical, pinpointing that inter-order hyperedge over-
lap has a small impact. The change in the behavior seems
to occur at a specific value of T (2)

c , which depends only
on the 2-hyperedges. These considerations are confirmed in
Fig. 7(d), which shows the algebraic connectivity of the gener-
alized Laplacian matrices restricted to 2-hyperedges, namely,
λ2(L(2) ), for each of the sets of 100 structures considered
for each pair of values of the two hyperedge overlaps. For
structures having T (2) > T (2)

c , we find that λ2(L(2) ) = 0. As
for Laplacian matrices, the multiplicity of the zero eigenvalue
corresponds to the number of connected components, we con-
clude that, in this case, the structure obtained using only the
existing 2-hyperedges is not connected. Since setting very
small values of σ (1) (in the limit case, σ (1) → 0), means to
rely exclusively on the interactions associated with the set of
2-hyperedges, stability of the synchronous state is impossible
to achieve.

On the contrary, when T (2) < T (2)
c , the values of the al-

gebraic connectivity exhibit a bimodal distribution between
the values λ2(L(2) ) = 0 (obtained in disconnected sets of
2-hyperedges) and the values λ2(L(2) ) = 0 (obtained in con-
nected sets of 2-hyperedges). This bimodality is captured
by the parameter φ [green-filled curve in Fig. 7(d)], which
accounts for the fraction of structures with a given T (2) and
λ2(L(2) ) = 0, and by the curve shown in Fig. 7(e). This latter
panel shows � as a function of the intra-order and inter-order
hyperedge overlap, clearly demonstrating the bimodality of
the distribution of � for T (2) < T (2)

c . Within each of the
two modes, low (high) values of overlap enlarge (reduce)
the synchronization area. This is consistent what observed in
Fig. 6(c). Furthermore, we note that, although the bimodality
(as well as the value of T (2)

c ) depends on the rewiring proce-
dure used to create the synthetic network under analysis, in
any case, to obtain the maximum intra-order overlap for an
order m, the set of m-hyperedges must be disconnected. Con-
versely, the random distribution of m-hyperedges is unlikely
to result in a disconnected set.

Lastly, we show that the two different behaviors discussed
above also appear in real-world structures. For the purpose
of exemplification, we use hypergraphs obtained from two
real-world data sets, namely, the Zachary Karate Club [35]
and a cat’s brain connectome [36]. For both structures, we

consider three generic nodes i, j, and k to be connected by
an 2-hyperedge, each time we find in the original data set a
clique involving them [16,22]. This yields a structure having
I (1,2) = 1.

Figure 8(a) shows the hypergraph obtained starting from
the Zachary Karate Club data set, with the green triangles rep-
resenting 2-hyperedges. The synchronization region predicted
by the master stability function for this hypergraph is depicted
in Fig. 8(b). Here we observe that synchronization cannot be
obtained when the coupling strength associated to pairwise
interactions is small (e.g., σ1 → 0). This is due to the fact
that two nodes, highlighted by blue circles in Fig. 8(a), do not
belong to any 2-hyperedge. The introduction of an additional
2-hyperedge [depicted in Fig. 8(a) as a blue triangle] in the
structure makes it connected also at the level of 2-hyperedges,
resulting in a bounded region of synchronization stability also
when σ1 → 0 [Fig. 8(c)].

For the hypergraph obtained from the cat connectome data
set [Fig. 8(d)] we find a different scenario since all nodes are
connected through 2-hyperedges. Consequently, the system
has a finite stability region for small σ1 [Fig. 8(e)]. Further-
more, upon isolating a node (highlighted with a blue circle) by
removing the 2-hyperedges to which it belongs [blue triangles
in Fig. 8(d)], the set of 2-hyperedges is no longer connected.
Consequently, a change of a single 2-hyperedge results into a
loss of stability for the synchronous state when σ1 → 0.

V. DISCUSSION AND CONCLUSIONS

In this work, we have investigated the relationship between
the microscopic organization of higher-order structures and
the collective behavior in systems of coupled dynamical sys-
tems. To this end, we have introduced a general framework to
characterize the hyperedge overlap of higher-order structures:
the overlap matrix. This matrix has two types of elements: the
diagonal matrix elements, quantifying the hyperedge overlap
between interactions of the same order, and the nondiag-
onal elements, quantifying the hyperedge overlap between
interactions of different orders. This framework offers a com-
prehensive tool to analyze all types and orders of hyperedge
overlap within a structure, unlike other metrics that focus on
a single measure combining all previous aspects (and thus
not allowing to distinguish among them) [28], or solely on
intra-order [18] or inter-order correlations [27].

Throughout the paper, we have examined the impact of hy-
peredge overlap on the stability of synchronization in systems
of coupled dynamical systems. The stability is determined by
the effective Laplacian, a matrix encapsulating the structure
and strength of interactions across all orders. Our findings
indicate that a high degree of hyperedge overlap hampers
the stability of synchronization. Hence, since a high degree
of overlap (in particular, inter-order) is associated with hy-
peredges satisfying the downward closure, our result suggest
that random hyperedges promote stability more effectively
than simplicial complexes. Furthermore, our findings pinpoint
that large hyperedege overlap within an order of interaction
promotes the tendency towards local synchronization. More-
over, a hierarchy among the elements of the overlap matrix
emerges, where higher-order overlaps are more critical for
synchronization stability. This occurs in two ways: first, larger
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FIG. 8. Connectedness of 2-hypererdges shapes the region of synchronization stability in real-world structures. (a)–(c) Hypergraph from
the Zachary Karate Club data set, with an additional 2-hyperedge shown in blue. (a) Graphical representation of the structure. (b) Region of
synchronization stability (black area) for the original hypergraph. (c) Region of synchronization stability for the hypergraph with the further
2-hyperedge added to reach full connectedness at the level of 2-hyperedges. (d)–(f) Hypergraph from the cat brain’s connectome. (d) Graphical
representation of the structure. (e) Region of synchronization stability for the original hypergraph. (f) Region of synchronization stability for
the hypergraph after isolation of a node, removing the 2-hyperedges to which it belongs. In all panels, a system of Rössler oscillators with
h(1)(x j ) = [x3

j , 0, 0]T and h(2)(x j, xk ) = [x2
j xk, 0, 0]T is considered. The red curves represent the theoretical prediction by the master stability

function approach, while the color code corresponds to the outcome of the numerical simulations. Note that, in panel (c), the soft green points
below the black area result from numerical instabilities in the integration of the chaotic dynamics.

values of intra-order hyperedge overlap result in a clustered
organization at the mesoscale; second, in the case of nonzero
inter-order hyperedge overlap, larger values of intra-order hy-
peredge overlap result in the lower orders of interactions being
overlapped to some extent.

By analyzing the behavior of coupled chaotic oscillators,
we have found that intra- and inter-order hyperedge overlaps
have a qualitatively distinct impact on the emerging dynam-
ics. This difference originates from the fact that, for a given
order of interactions, the set of hyperedges of that order must
be disconnected in order to reach the maximum value of
intra-order hyperedge overlap. Conversely, when the intra-
order hyperedge overlap is at its minimum, the probability
that the structure is disconnected is negligible. The lack of
connectedness at the level of interactions of a given order
interactions makes impossible to fulfill the constraint associ-
ated to synchronization stability when the interaction strength
associated to interactions of this order dominates over the
the ones associated to the other interactions. These findings,
which we have first obtained on synthetic structures where
all parameters were tunable, have been then exemplified and
confirmed also in hypergraphs constructed from real systems.

Overall, our results underscore the significance of mi-
croscopic organization for the dynamics of systems with
higher-order interactions, with particular reference to the anal-
ysis to dynamical systems of coupled oscillators, elucidating

the independent and combined effects of both types of
overlap. Future work could extend the analysis to more
sophisticated systems such as pacemakers [37], coupled neu-
rons [38,39], or higher-order nonlinear consensus dynamics
[40,41].
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FIG. 9. Examples of synthetic structures with tunable hyperedge
overlap. Examples of structures with N = 20 nodes and connectivity
k(1) = 6 and k(2) = 3 in four extreme scenarios: (a) I (1,2) = 1 and
T (2) = 0; (b) I (1,2) = 1 and T (2) = 1; (c) I (1,2) = 0 and T (2) = 0;
(d) I (1,2) = 0 and T (2) = 1.

APPENDIX: SYNTHETIC STRUCTURES

In order to obtain sets of hypernetworks covering the
{T (2), I (1,2)} space, we first generate a set of 2-hyperedges
with k(2)

i = k(2) for i = 1, . . . , N , ensuring maximum intra-
order hyperedge overlap (T (2) = 1) using the procedure
described in [18]. Next, we apply a numerical rewiring to
the set of 2-hyperedges to minimize the intra-order hyper-
edge overlap while maintaining the same initial generalized
degree, thus obtaining sets of 2-hyperedges spanning the full
range T (2) ∈ [0, 1]. For each set of 2-hyperedges created, we
consider a set of 1-hyperedges (links), where all nodes share
the same number of neighbors k(1), that cover all the faces of
the 2-hyperedges layer. This will result in hypernetworks with
maximized inter-order hyperedge overlap values for any given
scenario of T (2). Subsequently, we rewire the 1-hyperedges to
minimize the inter-order hyperedge overlap for each hypernet-
work, creating an ensemble that covers the entire parameter
space of {T (2), I (1,2)}. In Figs. 9(a)–9(d) we illustrate four
graphical examples of hypernetworks with different config-
urations of both metrics.
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